Portland-Limestone Cement: An Option to Make Concrete Even Greener

Jeff Hook, Lehigh Cement
Shawn Kalyn, St. Marys Cement
Paul Tennis, Portland Cement Association
PLC – The Concrete Difference

Concrete Information for the Owner, Designer, Contractor and Producer

Portland-Limestone Cement: An Option to Make Concrete Even GREENER
Today’s Objectives

• What is a portland-limestone blended cement
• Why use it
• How is it made
• How does it perform in concrete
• Some examples
• Questions
Portland-Limestone Cement

• What is a PLC?
 – Type IL blended cement in ASTM C595/AASHTO M 240
 – 5% to 15% limestone by mass
 – Option to implement proven technology to obtain desired performance and improve sustainability of concrete

Typical US Cement Composition:

<table>
<thead>
<tr>
<th>Material</th>
<th>Portland Cement</th>
<th>PLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinker</td>
<td>91 %</td>
<td>83%</td>
</tr>
<tr>
<td>Gypsum</td>
<td>6 %</td>
<td>6 %</td>
</tr>
<tr>
<td>Limestone</td>
<td>3 %</td>
<td>11 %</td>
</tr>
</tbody>
</table>

Up to 5% Limestone in Portland Cement – Up to 15% Limestone in PLC
Cement Manufacture
How is PLC Different?

- **PLC** is made by intergrinding regular clinker with up to 15% limestone while regular portland cement contains up to 5% limestone.
- **PLC** is a finer ground product than regular portland cement.

PORTLAND CEMENT

| 95% Ground Clinker | 5% limestone |

PLC

| 85% Ground Clinker | 15% limestone |
Energy to Produce Cement

![Graph showing energy usage to produce cement from 1965 to 2015. The energy usage decreases over time, from approximately 8 million BTU/ton in 1965 to 4 million BTU/ton in 2015.]
Some CO$_2$ Facts

- Each Tonne of clinker results in an unavoidable release of \sim525 kg of CO$_2$ due to calcination.

- This is about 60% of the total CO$_2$ emissions associated with cement manufacturing and occur regardless of the fuels used to support the kiln process.
Environmental Benefits

<table>
<thead>
<tr>
<th>Plant</th>
<th>Portland cement</th>
<th>Portland-limestone cement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant 1</td>
<td>0.80</td>
<td>0.70</td>
</tr>
<tr>
<td>Plant 2</td>
<td>0.82</td>
<td>0.75</td>
</tr>
<tr>
<td>Plant 3</td>
<td>0.84</td>
<td>0.78</td>
</tr>
</tbody>
</table>
History of Limestone in Cements

• 1965 Cement with 20% limestone in Germany for specialty applications
• 1979 French cement standards allows limestone
• 1983 CSA A5 allows up to 5% limestone in portland cement
• 1990 15±5% limestone blended cements routinely used in Germany
• 1992 UK specs allows up to 20% in limestone cement
• 2000 EN 197-1 allows 5% MAC (typ. limestone) in all 27 common cements
• 2000 EN 197-1 creates CEM II/A-L (6-20%) and CEM II/B-L (21-35%)
• 2004 ASTM C 150 allows 5% in Types I-V
• 2006 CSA A3001 allows 5% in other Types than GU
• 2007 AASHTO M85 allows 5% in Types I-V
• 2008 CSA A3001 includes PLC with 5%-15% limestone
• 2012 ASTM C595/AASHTO M 240 include PLC with 5% to 15% limestone
Why 15%?

- **Compressive strength measured**
- **Total porosity calculated**
- **Amount of CaCO₃ added [wt.-%]**

Legend:
- **Increase**
- **Decrease**

Data points indicate the relationship between the amount of CaCO₃ added and the relative change in porosity and compressive strength.
How Limestone Works

• Particle packing
 – Improved particle size distribution

• Nucleation
 – Surfaces for precipitation

• Chemical reactions
 – Only a small amount, but...
How Limestone Works

- **Particle packing**
 - Improved particle size distribution

- **Nucleation**
 - Surfaces for precipitation

- **Chemical reactions**
 - Only a small amount, but...
How Limestone Works

• Particle packing
 – Improved particle size distribution

• Nucleation
 – Surfaces for precipitation

• Chemical reactions
 – Only a small amount, but...
Strength

Strength at 1 day:

- PC
- PLC - 12%

Strength at 7 days:

- PC
- PLC - 12%
Strength

Strength at 28 days

Strength at 56 days

Compressive Strength (MPa)

Compressive Strength (psi)

No SCM 35% Slag 20% Fly Ash

No SCM 35% Slag 20% Fly Ash

www.pacaweb.org www.specifyconcrete.org www.cement.org
Permeability T 277/C1202

- No SCM
- 35% Slag
- 20% Fly Ash

Charge Passed (Coulombs)

- PC
- PLC

28 days

- W/CM = 0.40
- W/CM = 0.45

56 days

- W/CM = 0.40
- W/CM = 0.45
Sulfate Resistance C1012

Fly Ash Mixes
Standard C1012
23C

Expansion, %

Exposure, weeks

GU
GUL
GU + 15% FA
GUL + 15% FA
GU + 20% FA
GUL + 20% FA
GU + 25% FA
GUL + 25% FA
GU + 35% FA
GUL + 35% FA
ASR - Accelerated Mortar Bar Test

Exposure, days

Expansion, %

Control
30% Slag
40% Slag
50% Slag

--- GU
----- GUL

14d limit

Exposure, days

Expansion, %

Control
20% Fly Ash
25% Fly Ash
30% Fly Ash

--- GU
----- GUL

14d limit
PLC Application in Pavement

➢ A ready-mixed concrete plant yard was paved in 4 sections with 4 different cementitious mixes in 2009
 ➢ 100% Type I
 ➢ 100% Type IL
 ➢ Type I with 25% slag
 ➢ Type IL with 25% slag
PLC Application in Pavement
Placed November 3rd 2009, pavement is 9” thick
PLC APPLICATION IN PAVEMENT

www.pacaweb.org
www.specifyconcrete.org
www.cement.org
Then and now

November 3rd, 2009

October 30th, 2018
ODOT Approved concrete mix

QC 1 4000psi <2000 rcp

- Type IL /I 450 lb
- Slag cem 150 lb
- W/C 0.45
- Slump 5.75/8
- Air 7.2%/6.8%
- RCP 1147/1171
IL MTO Field Trial – Sarnia (October 2011)

- The application was slip formed barrier walls (MTO Contract) located on the north side of HW 402 Westbound in Sarnia, Ontario
- Type I with 25% Slag
- Type IL with 25% slag
- Low slump concrete 13/64\(^{th}\) to 1 inch
- Air Content (5-8%)
- The barrier walls are exposed to harsh weather conditions
- Strength and durability testing was completed by University of Toronto, along with other third party laboratories showing similar results when comparing Type I and IL

Highway 402 Westbound – East of Front Street (Sarnia, Ontario)
IL MTO Field Trial – Sarnia (October 2011)

Compressive Strength Results
Cylinders Cast at Plant

- **Type I**:
 - 7 Day: 4790 psi
 - 28 Day: 6310 psi
- **Type II**:
 - 7 Day: 4640 psi
 - 28 Day: 6670 psi

Flexural Strength Results

- **Type I**:
 - 28 Day: 880 psi
- **Type II**:
 - 28 Day: 830 psi
Concrete’s Ability to Resist Chloride Ion Penetrability

ASTM C1202

<table>
<thead>
<tr>
<th>Mix Identification</th>
<th>28 Day Rapid Chloride Permeability (Coulombs)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cast Cylinders</td>
</tr>
<tr>
<td>Type I</td>
<td>1391</td>
</tr>
<tr>
<td>Type IL</td>
<td>1470</td>
</tr>
</tbody>
</table>

Hardened Air Void Analysis

ASTM C457

<table>
<thead>
<tr>
<th>Mix Identification</th>
<th>Cast Cylinders</th>
<th>In Situ Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Air Content (%)</td>
<td>Specific Surface (mm⁻¹)</td>
</tr>
<tr>
<td>Type I</td>
<td>4.5</td>
<td>30.72</td>
</tr>
<tr>
<td>Type IL</td>
<td>4.1</td>
<td>41.12</td>
</tr>
<tr>
<td>Specifications</td>
<td>3.0 minimum</td>
<td>-</td>
</tr>
</tbody>
</table>
IL MTO Field Trial – Sarnia (October 2011)

Freeze Thaw Durability
Cast (75 x 75 x 285mm) Prisms
ASTM C666

<table>
<thead>
<tr>
<th>Mix Identification</th>
<th>Freeze Thaw Durability</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Mass Loss (%)</td>
<td>Average Length Change (%)</td>
<td>Average Durability Factor (%)</td>
</tr>
<tr>
<td>Load 3 - GU</td>
<td>-1.678</td>
<td>0.022</td>
<td>93.92</td>
</tr>
<tr>
<td>Load 6 - GUL</td>
<td>-1.624</td>
<td>0.020</td>
<td>90.19</td>
</tr>
</tbody>
</table>

Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals
300 x 250 x 75mm LS-412 Slabs

<table>
<thead>
<tr>
<th>Mix Identification</th>
<th>Average Salt Scaling Loss (kg/m²)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cast Slabs @ 50 Cycles</td>
<td>In Situ Cut Slabs @ 50 Cycles</td>
<td></td>
</tr>
<tr>
<td>Load 3 - GU</td>
<td>0.27</td>
<td>3.33</td>
<td></td>
</tr>
<tr>
<td>Load 6 - GUL</td>
<td>0.32</td>
<td>1.30</td>
<td></td>
</tr>
</tbody>
</table>

MTO Specification
0.80 kg/m² max @ 50 cycles
IL MTO Field Trial – Sarnia (October 2011)

Linear Shrinkage
MTO LS-435

<table>
<thead>
<tr>
<th>Mix Identification</th>
<th>Shrinkage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Load 3 – GU – Prism 1</td>
<td>-0.006</td>
</tr>
<tr>
<td>Load 3 – GU – Prism 2</td>
<td>-0.007</td>
</tr>
<tr>
<td>Load 3 – GU – Prism 3</td>
<td>-0.007</td>
</tr>
<tr>
<td>Average</td>
<td>-0.007</td>
</tr>
<tr>
<td>Load 6 – GUL – Prism 1</td>
<td>-0.007</td>
</tr>
<tr>
<td>Load 6 – GUL – Prism 2</td>
<td>-0.007</td>
</tr>
<tr>
<td>Load 6 – GUL – Prism 3</td>
<td>-0.007</td>
</tr>
<tr>
<td>Average</td>
<td>-0.007</td>
</tr>
</tbody>
</table>
Tim Horton’s Field, Hamilton, ON

- 2013-2014
- 14,000 yd3 concrete, 30 mixes
- PLC
- Mostly exterior concrete
- Design challenges
 - Cold weather construction
 - SCC
 - LEED Silver
- Design strengths to 5000 psi
Mattamy National Cycling Center

- 2013 to 2014
- 17,000+ yd³ concrete
- 34 mixes

- Strengths to 5000 psi for structural walls, slabs
- Leed Silver
Acceptance by State DOTs

Acceptance of Portland Limestone Cement
Tentative data: January 2014

Map of the United States showing acceptance status of Portland Limestone Cement by state.
Acceptance by State DOTs

Acceptance of Portland-Limestone Cement
Tentative data: January 2018

www.pacaweb.org
www.specifyconcrete.org
www.cement.org

Accepting
Planning to accept
Considering
Type II market
Not considering or no information
Acceptance by State DOTs

Acceptance of Portland-Limestone Cement
Tentative data: October 2018

Note: FAA P-501 permits use of Type II L
US Type IL Cement 2012 to 2016

Thousand metric tons

<table>
<thead>
<tr>
<th>Year</th>
<th>Metric Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>467</td>
</tr>
<tr>
<td>2013</td>
<td>348</td>
</tr>
<tr>
<td>2014</td>
<td>505</td>
</tr>
<tr>
<td>2015</td>
<td>526</td>
</tr>
<tr>
<td>2016</td>
<td>890</td>
</tr>
</tbody>
</table>
from Ashby (2009)
Summary

Portland-Limestone Cement

➢ Has a proven track record
 ➢ More than 75 countries around the world
 ➢ In Europe since 1960s
 ➢ In Canada many condos, industrial slabs and Pam-Am Games sporting facilities since 2010 successfully
➢ Reduces GHG emissions up to 10%
➢ Produces concrete with a comparable level of strength and durability as that produced with regular portland cement

www.pacaweb.org
www.specifyconcrete.org
www.cement.org
Portland-Limestone Cement: An Option to Make Concrete Even Greener

Shawn Kalyn, shawn.kalyn@vcimentos.com
Jeff Hook, jhook@lehighcement.com
Paul Tennis, ptennis@cement.org